System COP of Ejector-Based Ground-Source Heat Pumps
Mouhammad El Hassan ()
Additional contact information
Mouhammad El Hassan: Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 34218, Saudi Arabia
Energies, 2022, vol. 15, issue 22, 1-14
Abstract:
Compared to mechanical compressors, ejector-based refrigeration systems can make direct use of many forms of thermal energy, including waste heat, solar thermal, or biogases. It is known that SE systems have a lower thermal efficiency compared to mechanical compressors because of their lower performance at high compression ratios. In the present work, binary fluid ejector heat pumps with high efficiency are presented based on a proper selection of the binary fluids and the ejector geometry for specific operating conditions of a ground-source heat pump cooling system (GSHP). The existing literature on ejector-based refrigeration systems considers the thermal COP and does not account for many energy losses across the system. In the present paper, the system COP of an ejector-based GSHP that accounts for all energy exchange processes is determined. A method for the calculation of the work done by the boiler feed pump, the refrigeration expansion valve, and the ground loop circulation pump is presented. The influence of the condenser temperature on the entrainment process and the system COP is also discussed. The estimated overall system COP for the three top-ranked binary fluid candidates under various operating conditions was found to range from 1.55 to 3.06.
Keywords: supersonic ejector; binary fluid ejector (BFE); ground source heat pump (GSHP); coefficient of performance (COP); mixing; entrainment ratio (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8509/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8509/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8509-:d:972404
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().