Fluidic Thrust, Propulsion, Vector Control of Supersonic Jets by Flow Entrainment and the Coanda Effect
Toshihiko Shakouchi () and
Shunsuke Fukushima
Additional contact information
Toshihiko Shakouchi: Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
Shunsuke Fukushima: Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
Energies, 2022, vol. 15, issue 22, 1-13
Abstract:
Thrust, propulsion, vector control of supersonic jets has been applied to jet and rocket engines, ejectors, and other many devices. In general, there are two approaches to this type of control, namely mechanical moving systems and fluidic thrust vector control systems without moving parts, with mechanical moving systems being the most common. However, generally speaking, these systems are very complicated, and more simple methods and devices are desired. In this study, an extremely simple method for the thrust vector control of a supersonic jet by a fluidic Coanda nozzle (FC-nozzle) using the entrainment of the surrounding fluid and Coanda effect is newly proposed. The FC-nozzle consists of a pipe nozzle (Pi-nozzle), spacer, and linearly expanded Coanda nozzle (Co-nozzle) with eight suction pipes (Su-pipes) installed to surround the jet from the Pi-nozzle. The jet from the Pi-nozzle flows straight with the entrainment flow of the surrounding fluid. When some Su-pipes are closed, the pressure between the jet and Co-nozzle wall decreases, and subsequently, the jet deflects to the closed side of the Su-pipe and reattaches to the wall by the Coanda effect. The flow characteristics and deflection characteristics of the supersonic jet from the FC-nozzle are examined by the visualized flow pattern using the Schlieren method and measurements of the velocity distribution. As a result, it is shown that by changing the number of Su-pipes and the locations at which they are closed, the deflection angle and circumferential position of the jet from the Pi-nozzle can be easily controlled.
Keywords: thrust vector control; supersonic jet; nozzle; flow entrainment; Coanda effect; schlieren method (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8513/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8513/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8513-:d:972603
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().