Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage
Stefano Padula,
Claudio Tregambi,
Maurizio Troiano,
Almerinda Di Benedetto,
Piero Salatino,
Gianluca Landi () and
Roberto Solimene ()
Additional contact information
Stefano Padula: Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy
Claudio Tregambi: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy
Maurizio Troiano: Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy
Almerinda Di Benedetto: Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy
Piero Salatino: Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy
Gianluca Landi: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy
Roberto Solimene: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy
Energies, 2022, vol. 15, issue 22, 1-15
Abstract:
The performance of a perovskite-based oxygen carrier for the partial oxidation of methane in thermochemical energy storage applications has been investigated. A synthetic perovskite with formula La 0.6 Sr 0.4 FeO 3 has been scrutinized for Chemical Looping Reforming (CLR) of CH 4 under fixed-bed and fluidized-bed conditions. Temperature-programmed reduction and oxidation steps were carried out under fixed-bed conditions, together with isothermal reduction/oxidation cycles, to evaluate long-term perovskite performance. Under fluidized-bed conditions, isothermal reduction/oxidation cycles were carried out as well. Results obtained under fixed-bed and fluidized-bed conditions were compared in terms of oxygen carrier reactivity and stability. The oxygen carrier showed good reactivity and stability in the range 800–1000 °C. An overall yield of 0.6 Nm 3 of syngas per kg of perovskite can be reached per cycle. The decomposition of CH 4 catalyzed by the reduced oxide can also occur during the reduction step. However, deposited carbon is easily re-gasified through the Boudouard reaction, without affecting the reactivity of the material. Fluidized-bed tests showed higher conversion rates compared to fixed-bed conditions and allowed better control of CH 4 decomposition, with a H 2 :CO ratio of around 2 and CO selectivity of around 0.8. However, particle attrition was observed and might be responsible for a loss of the inventory of up to 9% w .
Keywords: fixed bed; fluidized bed; syngas; hydrogen; methane partial oxidation; isothermal cycles; concentrated solar thermal technologies (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8556/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8556/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8556-:d:973858
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().