Thermal Energy Storage in Concentrating Solar Power Plants: A Review of European and North American R&D Projects
Sara Pascual (),
Pilar Lisbona and
Luis M. Romeo
Additional contact information
Sara Pascual: Departamento de Ingeniería Mecánica, Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, C/María de Luna s/n, 50018 Zaragoza, Spain
Pilar Lisbona: Departamento de Ingeniería Mecánica, Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, C/María de Luna s/n, 50018 Zaragoza, Spain
Luis M. Romeo: Departamento de Ingeniería Mecánica, Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, C/María de Luna s/n, 50018 Zaragoza, Spain
Energies, 2022, vol. 15, issue 22, 1-32
Abstract:
Thermal energy storage (TES) is the most suitable solution found to improve the concentrating solar power (CSP) plant’s dispatchability. Molten salts used as sensible heat storage (SHS) are the most widespread TES medium. However, novel and promising TES materials can be implemented into CSP plants within different configurations, minimizing the TES costs and increasing the working temperature to improve the thermal performance of the associated power block. The first objective of this review is to provide an overview of the most widespread CSP technologies, TES technologies and TES-CSP configurations within the currently operational facilities. Once this information has been compiled, the second aim is to collect and present the existing European and North American TES-CSP Research and Development (R&D) projects within the last decade (2011–2021). Data related to these projects such as TES-CSP configuration path, TES and CSP technologies applied, storage capacity, power block associated and the levelized cost of electricity (LCOE) of the commercial up-scaling project are presented. In addition, project information such as location, research period, project leader and budget granted are also extracted. A timeline of the R&D projects launched from 2011 is built, showing the technology readiness level (TRL) achieved by the end of the project.
Keywords: concentrating solar power; thermal energy storage; TES CSP integration paths; TES CSP R&D projects (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8570/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8570/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8570-:d:974324
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().