High-Efficiency Power Cycles for Particle-Based Concentrating Solar Power Plants: Thermodynamic Optimization and Critical Comparison
Miguel Angel Reyes-Belmonte () and
Francesco Rovense ()
Additional contact information
Miguel Angel Reyes-Belmonte: Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, Calle Tulipán, 28933 Móstoles, Madrid, Spain
Francesco Rovense: Laboratorio Energia e Ambiente Piacenza, LEAP s.c.a.r.l., Via Nino Bixio, 27/C, 29121 Piacenza, Italy
Energies, 2022, vol. 15, issue 22, 1-18
Abstract:
This paper investigates and compares several highly efficient thermodynamic cycles that are suitable for coupling with particle-in-tube fluidized-bed solar receiver technology. In such a receiver, high-temperature particles are used as both a heat transfer fluid and a storage medium. A dense particle suspension (DPS) is created through an upward bubbling fluidized-bed (UBFB) flow inside the receiver tubes, which constitutes the “particle-in-tube” solar receiver concept. Reaching higher temperatures is seen as a key factor for future cost reductions in the solar plant, as this leads to both higher power conversion efficiency and increased energy storage density. Three advanced thermodynamic cycles are analyzed in this work: the supercritical steam Rankine cycle (s-steam), supercritical carbon dioxide cycle (s-CO 2 ) and integrated solar combined cycle (ISCC). For each one, 100% solar contribution, which is considered the total thermal input to the power cycle, can be satisfied by the solar particle receiver. The main findings show that the s-CO 2 cycle is the most suitable thermodynamic cycle for the DPS solar plant, exhibiting a net cycle efficiency above 50% for a moderate temperature range (680–730 °C). For the other advanced power cycles, 45.35% net efficiency can be achieved for the s-steam case, while the efficiency of the ISCC configuration is limited to 45.23% for the solar-only operation mode.
Keywords: power cycles; particle receivers; thermodynamic optimization; solar energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8579/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8579/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8579-:d:974508
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().