Numerical Analysis for Coal Gasification Performance in a Lab-Scale Gasifier: Effects of the Wall Temperature and Oxygen/Coal Ratio
Sunel Kumar (),
Zhihua Wang,
Yong He,
Yanqun Zhu and
Kefa Cen
Additional contact information
Sunel Kumar: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Zhihua Wang: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Yong He: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Yanqun Zhu: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Kefa Cen: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Energies, 2022, vol. 15, issue 22, 1-15
Abstract:
The optimization of multiple factors for gasification performance using a 3D CFD model with advanced sub-models for single-stage drop tube coal gasification was compared with experimental results. A single-stage down-drop gasifier with multiple coal injectors and a single oxygen injector at the top of the gasifier was investigated at different temperatures and O 2 /coal ratios. A finite rate/eddy dissipation (FR/ED) model was employed to define the chemical reactions. Kinetic data for the various reactions were taken from previous work. The realizable k–ε turbulent model and Euler–Lagrangian framework were adopted to solve the turbulence equations and solid–gas interaction. First, various preliminary reactions were simulated to validate the reaction model with experimental data. Furthermore, various cases were simulated at various O/C ratios and wall temperatures to analyze the syngas species, temperature profile in the whole gasifier, exit temperature, carbon conversion, turbulent intensity, and velocity profile. The maximum CO was found to be 75.06% with an oxygen/coal ratio of 0.9 at 1800 °C. The minimum and maximum carbon conversions were found to be 97.5% and 99.8% at O/C 0.9 at 1200 °C and O/C 1.1 at 1800 °C, respectively.
Keywords: CFD simulation; coal gasification performance; single-stage entrained flow gasifier; carbon conversion (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8645/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8645/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8645-:d:976368
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().