The Impact of the Electric Double-Layer Capacitor (EDLC) in Reducing Stress and Improving Battery Lifespan in a Hybrid Energy Storage System (HESS) System
Chrispin Tumba Tshiani and
Patrice Umenne ()
Additional contact information
Chrispin Tumba Tshiani: Electrical Engineering Department, University of South Africa, Florida, Johannesburg 1709, South Africa
Patrice Umenne: Electrical Engineering Department, University of South Africa, Florida, Johannesburg 1709, South Africa
Energies, 2022, vol. 15, issue 22, 1-19
Abstract:
This paper investigates the effect of the electric double layer capacitor (EDLC) in reducing stress and prolonging the battery lifespan in a hybrid energy storage system (HESS). A 65 F, 16.2 V EDLC supercapacitor was connected in a laboratory experiment to produce its charge/discharge profile at a constant current of 5 and 10 A. The EDLC’s Faranda or “two branch model” mathematical parameters were extracted from the experimental charge/discharge profile. The extracted parameters were used as inputs to design the Python/MATLAB/Simulink (PMS)-hybrid model of the EDLC. The charge/discharge profiles of the simulated PMS model of the EDLC were then compared to the charge/discharge profiles derived from the experimental setup of the EDLC and were found to match. The PMS model of the EDLC was then used as a subcomponent in an HESS system modelled in MATLAB/Simulink. Using constant load conditions, the battery’s voltage, current, power and state of charge (SOC) were analyzed for a battery energy storage system (BESS) without a supercapacitor and then compared to an HESS system with a supercapacitor in an experimental setup. This process was repeated with the simulated PMS model of the EDLC in MATLAB/Simulink for HESS and without the EDLC for BESS. Finally using a variable load in an experimental setup, the battery’s voltage and current were analyzed for a BESS system and compared to an HESS system. All these data show that, in an HESS system with a supercapacitor, there is less stress on the battery with a load applied. This is indicated by the voltage and current values in an HESS system being consistently more stable with respect to time as compared to the BESS system. As a result, in an HESS system, the battery will have a longer lifespan.
Keywords: battery lifespan; battery energy storage system (BESS); EDLC; hybrid energy storage system (HESS); Python/MATLAB/Simulink (PMS)-hybrid model; supercapacitor (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8680/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8680/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8680-:d:977528
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().