EconPapers    
Economics at your fingertips  
 

Enhancing the Efficiency of Integrated Energy Systems by the Redistribution of Heat Based on Monitoring Data

Andrii Radchenko, Mykola Radchenko, Hanna Koshlak (), Roman Radchenko and Serhiy Forduy
Additional contact information
Andrii Radchenko: Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine
Mykola Radchenko: Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine
Hanna Koshlak: Department of Building Physics and Renewable Energy, Kielce University of Technology, Aleja Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Roman Radchenko: Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine
Serhiy Forduy: PepsiCo, Inc., 01010 Kyiv, Ukraine

Energies, 2022, vol. 15, issue 22, 1-18

Abstract: Integrated energy systems (IES) for combined power, heat and refrigeration supply achieved a wide application due to high flexibility in matching current loading. So as electricity is easily convertible into any other form of energy, gas engines are widely applied as driving engines characterized by high electrical and overall efficiency of about 45% and 90%, respectively. However, the highest thermal efficiency is achieved at full matching heat generated by the engine and heat transformed. This is often impossible in actual practice, especially if the heat is transformed into refrigeration by the most efficient and widespread absorption lithium-bromide chillers (ACh) and the heat not consumed by the ACh is removed from the atmosphere through an emergency radiator. The unused heat might be transformed by an ejector chiller (ECh) as the simplest and cheapest. So as the thermodynamic efficiency of any combustion engine is influenced essentially by the sucked air temperature, the excessive refrigeration produced by the ECh, is used for IES cooling to generate additional electricity and increase the electrical and overall efficiency of the engine. Such a redistribution of heat enables the enhancement of the efficiency of IES with an absorption-ejector chiller (AECh). The modified criteria for the comparative estimation of thermodynamic efficiency of innovative IESs with AEChs without overgenerated heat lost against a typical IES with an ACh and heat lost are proposed. In contrast to well-known electrical and heat efficiency, it considers the magnitude of heat loss and enables us to compare the heat efficiency of any version of transforming heat to refrigeration with an ideal basic version of IES based on a highly efficient ACh, transforming all the heat removed from the engine without heat loss. Some alternative scheme decisions for heat recovery systems have been developed based on monitoring data. They might be easily implemented into a typical IES with ACh.

Keywords: integrated energy supply; gas engine; heat transformation; overgenerated heat; refrigeration (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8774/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8774/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8774-:d:979869

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8774-:d:979869