EconPapers    
Economics at your fingertips  
 

Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies

Anusha Ganta, Yasser Bashir and Sovik Das ()
Additional contact information
Anusha Ganta: Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
Yasser Bashir: Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
Sovik Das: Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India

Energies, 2022, vol. 15, issue 23, 1-34

Abstract: A milk-processing plant was drafted as a distinctive staple industry amid the diverse field of industries. Dairy products such as yogurt, cheese, milk powder, etc., consume a huge amount of water not only for product processing, but also for sanitary purposes and for washing dairy-based industrial gear. Henceforth, the wastewater released after the above-mentioned operations comprises a greater concentration of nutrients, chemical oxygen demand, biochemical oxygen demand, total suspended solids, and organic and inorganic contents that can pose severe ecological issues if not managed effectively. The well-known processes such as coagulation–flocculation, membrane technologies, electrocoagulation, and other biological processes such as use of a sequencing batch reactor, upflow sludge anaerobic blanket reactor, etc., that are exploited for the treatment of dairy effluent are extremely energy-exhaustive and acquire huge costs in terms of fabrication and maintenance. In addition, these processes are not competent in totally removing various contaminants that exist in dairy effluent. Accordingly, to decrease the energy need, microbial electrochemical technologies (METs) can be effectively employed, thereby also compensating the purification charges by converting the chemical energy present in impurities into bioelectricity and value-added products. Based on this, the current review article illuminates the application of diverse METs as a suitable substitute for traditional technology for treating dairy wastewater. Additionally, several hindrances on the way to real-world application and techno-economic assessment of revolutionary METs are also deliberated.

Keywords: bioelectrochemical system; dairy wastewater; microbial fuel cell; microbial electrochemical system; wastewater treatment (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/23/9084/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/23/9084/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:23:p:9084-:d:989236

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9084-:d:989236