Development of a Transient Synchronization Analysis Tool for Line-Start PM Motors
Phillip Schommarz and
Rong-Jie Wang ()
Additional contact information
Phillip Schommarz: Department of Electrical & Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa
Rong-Jie Wang: Department of Electrical & Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa
Energies, 2022, vol. 15, issue 23, 1-31
Abstract:
With more stringent IEC energy efficiency standards, electrical machine industry increasingly focuses on new motor technologies. Amongst others, the line-start permanent magnet synchronous machine (LSPMSM) is considered as an attractive alternative to induction machine, especially for low power and fixed-speed applications. However, the design of LSPMSMs is rather complex as both steady-state and transient synchronization performances need to be considered. The synchronization capability determination of a LSPMSM design usually relies on time-consuming transient finite-element simulations, which is impractical for use in an iterative design optimization process. This paper compares and evaluates various existing analytical synchronization analysis methods in an attempt to identify most suitable equations and methods for fast synchronization analysis. Using the selected methods, a software tool is developed that can seamlessly work with ANSYS Electronics Desktop to perform rapid transient synchronization analysis. Given its ability to quickly determine the critical inertia factor of a LSPMSM design, the software tool is further adapted for use in a highly iterative, multi-objective design optimization procedure. It shows that the developed software tool can be successfully used in the design of LSPMSMs.
Keywords: analytical modeling; finite element method; line-start motor; permanent magnet machine; software development; synchronization; transient performance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/23/9206/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/23/9206/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:23:p:9206-:d:993801
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().