EconPapers    
Economics at your fingertips  
 

Towards Optimization of Energy Consumption of Tello Quad-Rotor with Mpc Model Implementation

Rabab Benotsmane and József Vásárhelyi ()
Additional contact information
Rabab Benotsmane: Institute of Automation and Info-Communication, University of Miskolc (UM), 3515 Miskolc, Hungary
József Vásárhelyi: Institute of Automation and Info-Communication, University of Miskolc (UM), 3515 Miskolc, Hungary

Energies, 2022, vol. 15, issue 23, 1-25

Abstract: For the last decade, there has been great interest in studying dynamic control for unmanned aerial vehicles, but drones—although a useful technology in different areas—are prone to several issues, such as instability, the high energy consumption of batteries, and the inaccuracy of tracking targets. Different approaches have been proposed for dealing with nonlinearity issues, which represent the most important features of this system. This paper focuses on the most common control strategy, known as model predictive control (MPC), with its two branches, linear (LMPC) and nonlinear (NLMPC). The aim is to develop a model based on sensors embedded in a Tello quad-rotor used for indoor purposes. The original controller of the Tello quad-rotor is supposed to be the slave, and the designed model predictive controller was created in MATLAB. The design was imported to another embedded system, considered the master. The objective of this model is to track the reference trajectory while maintaining the stability of the system and ensuring low energy consumption. The case study in this paper compares linear and nonlinear model predictive control (MPC). The results show the efficiency of NLMPC, which provides more promising results compared to LMPC. The comparison concentrates on the energy consumption, the tracked trajectory, and the execution time. The main finding of this research is that NLMPC is a good solution to smoothly track the reference trajectory. The controller in this case processes faster, but the rotors consume more energy because of the increased values of control inputs calculated by the nonlinear controller.

Keywords: energy consumption; dynamic control; UAV; model predictive control; nonlinear MPC; trajectory tracking (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/23/9207/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/23/9207/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:23:p:9207-:d:993843

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9207-:d:993843