Hybrid Model-Based BESS Sizing and Control for Wind Energy Ramp Rate Control
Abebe Tilahun Tadie,
Zhizhong Guo and
Ying Xu ()
Additional contact information
Abebe Tilahun Tadie: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
Zhizhong Guo: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
Ying Xu: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
Energies, 2022, vol. 15, issue 23, 1-17
Abstract:
This paper presents a hybrid model constituting dynamic smoothing technique and particle swarm optimization techniques to optimally size and control battery energy storage systems for wind energy ramp rate control and power system frequency performance enhancement. In today’s modern power system, a high-proportion renewable energy grid is inevitable. This high-proportion renewable energy grid is a power system with abundant integration of renewable energy resources under the presence of energy storage tools. Energy storage tools are integrated into such power systems to balance the fluctuation and intermittence of renewable energy sources. One of the requirements in a high-proportion renewable energy grid is the fractional power balance between generation and load. One of the requirements set by power system regulators is the generation variation between two time points. A power producer is mandated to satisfy the ramp rate requirement set by the grid owner. This paper proposes dynamic smoothing techniques for initial size determination and particle swarm optimization based on optimal sizing and control of battery energy storage systems for ramp rate control and frequency regulation performance of a power system integrated with a large percentage of wind energy systems. Wind energy data taken from Zhangjiakou wind farm in China are used. The results indicate that the battery energy storage system improves the ramp rate characteristics of the wind farm. In addition, the virtual inertia capability of the battery energy storage system enabled the transient and steady-state frequency response of the test power system to improve significantly.
Keywords: renewable energy sources; ramp rate control; renewable energy grid; battery energy storage system; power smoothing; frequency regulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/23/9244/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/23/9244/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:23:p:9244-:d:994985
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().