EconPapers    
Economics at your fingertips  
 

FBG Sensing Technology for an Enhanced Microgrid Performance

Yasser Elsayed and Hossam A. Gabbar ()
Additional contact information
Yasser Elsayed: Faculty of Engineering and Applied Science, Ontario Tech University, 2000 Simcoe St. North, Oshawa, ON L1G 0C5, Canada
Hossam A. Gabbar: Faculty of Engineering and Applied Science, Ontario Tech University, 2000 Simcoe St. North, Oshawa, ON L1G 0C5, Canada

Energies, 2022, vol. 15, issue 24, 1-16

Abstract: Energy provided by microgrids should be considered, especially because their purpose is to supply loads from the available power source of the combined sources of energy, including the grid, optimally and efficiently to satisfy the load demand securely and economically. Sensing the accuracy of the different physical parameters of the combined power sources and energy storage plays a crucial part in the efficiency and resilience of microgrids. The present microgrids mostly use conventional sensors, which are greatly impacted by ambient conditions such as high-voltage (HV) and electromagnetic interference (EMI). So, this paper presents an enhanced microgrid based on replacing the conventional sensors with fiber Bragg grating (FBG) sensors renowned for their immunity to EMI and HV, in addition to the virtue of distributing sensing capability. The enhanced microgrid based on FBG sensing was tested experimentally at different potential points predefined on the microgrid and validated with a microgrid simulation model. Real-time measurements of FBG and conventional sensors were recorded at the potential points and applied to the Simulink model to compare the performance for both cases. The unit and integration tests showed an obvious improvement in the accuracy and resiliency of the microgrid by using FBG sensors.

Keywords: fiber bragg grating; microgrid; sensing technologies; renewable energy systems; energy storage systems (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/24/9273/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/24/9273/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:24:p:9273-:d:996122

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9273-:d:996122