EconPapers    
Economics at your fingertips  
 

Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress

Rui Song, Yaojiang Duan (), Jianjun Liu () and Yujia Song
Additional contact information
Rui Song: School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
Yaojiang Duan: School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
Jianjun Liu: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
Yujia Song: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

Energies, 2022, vol. 15, issue 24, 1-22

Abstract: A deep understanding of the dissociation and transportation mechanism of natural gas hydrate (NGH), taking into account the effects of geo-stress, contributes to optimizing the development strategy and increases the exploitation efficiency of NGH. In this paper, the mathematical model, coupled with fluid heat and mass transfer, multiphase flow mechanics, and reaction kinetics with phase change in the process of hydrate decomposition was established. An axisymmetric two-dimensional model was developed to simulate the depressurization decomposition process of natural gas hydrate in the Berea sandstones. FLUENT software was used to solve the fundamental governing equations of the multi-phase flow, and UDF programming was employed to program the hydrate decomposition model and the modified permeability model in the dissociation and transportation of NGH. The simulation results were then validated by Masuda’s experimental data. The effects of gas saturation, outlet pressure, temperature, absolute permeability and geo-stress on the decomposition of natural gas hydrate were studied. The results indicated that a higher absolute permeability, higher initial gas saturation, lower outlet pressure, and higher initial temperature advance the decomposition rate of hydrate. Thus, an optimized production plan is essential to promote the extraction efficiency of the NGH. The geo-stress causes a decrease in the porosity and permeability of the porous rock, which restricts the efficiency of the heat and mass transfer by the fluid flow, leading to a slower dissociation and transportation rate of the NGH. Thus, it is important to take geo-stress into consideration and balance the extracting efficiency and the well pressure, especially when the NGH is developed by depressurization.

Keywords: natural gas hydrate; heat and mass transfer; reaction kinetics; geo-stress (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/24/9311/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/24/9311/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:24:p:9311-:d:997581

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9311-:d:997581