EconPapers    
Economics at your fingertips  
 

Influence of Hydrogen Enrichment Strategy on Performance Characteristics, Combustion and Emissions of a Rotary Engine for Unmanned Aerial Vehicles (UAVs)

Merve Kucuk (), Ali Surmen and Ramazan Sener
Additional contact information
Merve Kucuk: Department of Mechanical Engineering, Bursa Technical University, Bursa 16310, Turkey
Ali Surmen: Department of Automotive Engineering, Bursa Uludag University, Bursa 16059, Turkey
Ramazan Sener: Department of Electronics and Automation, Batman University, Batman 72100, Turkey

Energies, 2022, vol. 15, issue 24, 1-22

Abstract: In recent years, there has been great interest in Wankel-type rotary engines, which are one of the most suitable power sources for unmanned aerial vehicle (UAV) applications due to their high power-to-size and power-to-weight ratios. The purpose of the present study was to investigate the potential of a hydrogen enrichment strategy for the improvement of the performance and reduction of the emissions of Wankel engines. The main motivation behind this study was to make Wankel engines, which are already very advantageous for UAV applications, even more advantageous by applying the hydrogen enrichment technique. In this study, hydrogen addition was implemented in a spark-ignition rotary engine model operating at a constant engine speed of 6000 rpm. The mass fraction of hydrogen in the intake gradually increased from 0% to 10%. Simulation results revealed that addition of hydrogen to the fuel accelerated the flame propagation and increased the burning speed of the fuel, the combustion temperature and the peak pressure in the working chamber. These phenomena had a very positive effect on the performance and emissions of the Wankel engine. The indicated mean effective pressure (IMEP) increased by 8.18% and 9.68% and the indicated torque increased by 6.15% and 7.99% for the 5% and 10% hydrogen mass fraction cases, respectively, compared to those obtained with neat gasoline. In contrast, CO emissions were reduced by 33.35% and 46.21% and soot emissions by 11.92% and 20.06% for 5% and 10% hydrogen additions, respectively. NO x emissions increased with the application of the hydrogen enrichment strategy for the Wankel engine.

Keywords: CFD simulation; combustion; emission; hydrogen enrichment; Wankel engine; UAVs (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/24/9331/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/24/9331/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:24:p:9331-:d:998575

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9331-:d:998575