EconPapers    
Economics at your fingertips  
 

A Deep Neural Network as a Strategy for Optimal Sizing and Location of Reactive Compensation Considering Power Consumption Uncertainties

Manuel Jaramillo (), Diego Carrión and Jorge Muñoz
Additional contact information
Manuel Jaramillo: Smart Grid Research Group—GIREI (Spanish Acronym), Salesian Polytechnic University, Quito EC170702, Ecuador
Diego Carrión: Smart Grid Research Group—GIREI (Spanish Acronym), Salesian Polytechnic University, Quito EC170702, Ecuador
Jorge Muñoz: Smart Grid Research Group—GIREI (Spanish Acronym), Salesian Polytechnic University, Quito EC170702, Ecuador

Energies, 2022, vol. 15, issue 24, 1-21

Abstract: This research proposes a methodology for the optimal location and sizing of reactive compensation in an electrical transmission system through a deep neural network (DNN) by considering the smallest cost for compensation. An electrical power system (EPS) is subjected to unexpected increases in loads which are physically translated as an increment of users in the EPS. This phenomenon decreases voltage profiles in the whole system which also decreases the EPS’s reliability. One strategy to face this problem is reactive compensation; however, finding the optimal location and sizing of this compensation is not an easy task. Different algorithms and techniques such as genetic algorithms and non-linear programming have been used to find an optimal solution for this problem; however, these techniques generally need big processing power and the processing time is usually considerable. That being stated, this paper’s methodology aims to improve the voltage profile in the whole transmission system under scenarios in which a PQ load is randomly connected to any busbar of the system. The optimal location of sizing of reactive compensation will be found through a DNN which is capable of a relatively small processing time. The methodology is tested in three case studies, IEEE 14, 30 and 118 busbar transmission systems. In each of these systems, a brute force algorithm (BFA) is implemented by connecting a PQ load composed of 80% active power and 20% reactive power (which varies from 1 MW to 100 MW) to every busbar, for each scenario, reactive compensation (which varies from 10 Mvar to 300 Mvar) is connected to every busbar. Then power flows are generated for each case and by selecting the scenario which is closest to 90% of the original voltage profiles, the optimal scenario is selected and overcompensation (which would increase cost) is avoided. Through the BFA, the DNN is trained by selecting 70% of the generated data as training data and the other 30% is used as test data. Finally, the DNN is capable of achieving a 100% accuracy for location (in all three case studies when compared with BFA) and objective deviation has a difference of 3.18%, 7.43% and 0% for the IEEE 14, 30 and 118 busbar systems, respectively (when compared with the BFA). With this methodology, it is possible to find the optimal location and sizing of reactive compensation for any transmission system under any PQ load increment, with almost no processing time (with the DNN trained, the algorithm takes seconds to find the optimal solution).

Keywords: multi-layer neural network; reactive compensation; electrical power system; deep learning; optimal location; optimal sizing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/24/9367/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/24/9367/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:24:p:9367-:d:999774

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9367-:d:999774