The Analysis of Energy Recovered during the Braking of an Electric Vehicle in Different Driving Conditions
Emilia M. Szumska and
Rafał Jurecki ()
Additional contact information
Emilia M. Szumska: Department of Automotive Engineering and Transport, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Ave. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Rafał Jurecki: Department of Automotive Engineering and Transport, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Ave. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Energies, 2022, vol. 15, issue 24, 1-16
Abstract:
The partial recovery of kinetic energy during braking allows the vehicle’s battery to be additionally charged and thus extends the range of an electric vehicle. Because of the different operating strategies of the braking energy recovery system, it is important to understand the factors influencing the level of recovered energy. The driving conditions at the place of use have a direct impact on the energy efficiency of an electric vehicle. The purpose of this paper was to analyze the energy recovered during braking in different driving conditions. The tests were based on the parameters of actual trips made along urban and suburban routes, and express roads. The collected actual speed profiles were used for the simulation studies. AVL cruise vehicle simulation software was used in the study. Simulation tests revealed that the levels of energy recovered during braking in an electric vehicle were the highest in urban conditions. The amount of energy recovered during urban driving can account for 20% of the total trip energy. In driving conditions characterized by different intensities caused by trips at different times of the day, similar values of recovered energy were recorded. When driving in the afternoon hours, the level of recovered energy per 1 km was about 2% lower than when driving in rush hour conditions. From the results presented in this paper, it can be concluded that driving conditions have an impact on the level of recovered energy. The type of road on which the electric vehicle drives is particularly important.
Keywords: electric/hybrid vehicle (EVs); energy efficiency; braking (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/24/9369/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/24/9369/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:24:p:9369-:d:999863
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().