Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties
Zhihan Shi,
Weisong Han,
Guangming Zhang,
Zhiqing Bai,
Mingxiang Zhu and
Xiaodong Lv
Additional contact information
Zhihan Shi: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China
Weisong Han: College of Transportation Engineering, Nanjing Tech University, Nanjing 211899, China
Guangming Zhang: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China
Zhiqing Bai: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China
Mingxiang Zhu: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China
Xiaodong Lv: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China
Energies, 2022, vol. 15, issue 24, 1-20
Abstract:
It is of great significance to introduce the conception of a sharing economy into the electricity industry, which can promote the dispatch of multiple integrated energy systems. On the one hand, it is difficult to reveal the behaviors of complex players with multi-energy coupling through the traditional centralized optimization method of single electric energy. On the other hand, the uncertain fluctuations of renewable energy, such as wind power and photovoltaic, have posed great challenges to market transactions. First, the relationship and the functions of all stakeholders in the system are described in this paper, followed by the establishment of flexible resource models such as demand response and energy storage devices. On this basis, a low-carbon dispatching framework of multiple regional gas–electric integrated energy systems is then constructed under the guidance of cooperative game theory. The contribution indexes are established to measure the degree of energy sharing among the subsystems, and the method of asymmetric Nash bargaining is used to settle the interests of each subsystem. Second, a robust optimization model of multiple regional systems is established in response to multiple uncertainties from renewable energy and load. Finally, the numerical example proves that the proposed mechanism can increase the benefits of each integrated energy system player. Moreover, it helps the system to yield optimal benefits in the face of uncertainties and provides a reference on how to realize energy sharing under uncertainties from source load.
Keywords: gas–electric integrated energy system; flexible resource; energy sharing; multiple uncertainties; low-carbon dispatching; asymmetric Nash bargaining (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/24/9604/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/24/9604/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:24:p:9604-:d:1007021
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().