EconPapers    
Economics at your fingertips  
 

Sliding Mode Input Current Control of the Synchronous DC-DC Buck Converter for Electro-Mechanical Actuator Emulation in More Electric Aircrafts

Mahdi Salimi (), Christian Klumpner and Serhiy Bozhko
Additional contact information
Mahdi Salimi: Faculty of Engineering and Science, University of Greenwich, Kent ME4 4TB, UK
Christian Klumpner: Power Electronics, Machines and Control (PEMC) Research Group, University of Nottingham, Nottingham NG7 2RD, UK
Serhiy Bozhko: Power Electronics, Machines and Control (PEMC) Research Group, University of Nottingham, Nottingham NG7 2RD, UK

Energies, 2022, vol. 15, issue 24, 1-21

Abstract: The main challenges of the input current control in synchronous DC-DC buck converters are the nonlinear model of the system, changes of the operating point in a wide range, and the need to use an input LC filter for current smoothing, which may result in the instability of the closed-loop system. In this paper, a step-by-step approach is developed for the design and improvement of a PI-feedforward closed-loop controller. It is shown that a linear PI controller cannot stabilize the closed-loop system properly during wide changes in model parameters, e.g., an equivalent series resistance of the input filter. To cope with the stability issues, a fixed-frequency sliding mode controller (SMC) has been developed in this paper for the implementation of an electro-mechanical actuator (EMA) emulator. Moreover, a systematic approach is proposed for controller tuning and the selection of the SMC’s gains. To achieve high power efficiency, high-frequency GaN switches are used for the practical implementation of the DC-DC converter. Despite large changes in the load current, the designed nonlinear controller can track the input current reference satisfactorily. Steady-state and dynamic responses of the proposed SMC are compared with conventional linear controllers. Considering the Lyapunov stability theorem, it is proved that the designed SMC can stabilize the closed-loop system in the entire utilizable domain. The proposed nonlinear SMC controller enjoys a very simple control law. Hence, despite having very high switching and sampling frequencies, it can be easily implemented. The experimental response of the designed synchronous DC-DC buck converter is evaluated experimentally by implementing the control strategy in a TMS320F28335PGFA DSP from Texas Instrument . Moreover, the comprehensive comparison of the proposed SMC controller and a PI-feedforward controller proved the superior performance of the developed closed-loop system, in terms of the transient time response, robustness, and stability of the EMA emulator.

Keywords: EMA Emulator; SMC; input current control; synchronous DC-DC converters (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/24/9628/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/24/9628/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:24:p:9628-:d:1007899

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9628-:d:1007899