Performance Analysis of Integrated Photovoltaic-Thermal and Air Source Heat Pump System through Energy Simulation
Sangmu Bae,
Soowon Chae and
Yujin Nam
Additional contact information
Sangmu Bae: Department of Architectural Engineering, Pusan National University, 2 Busandaehak-ro 63, Geomjeong-gu, Busan 46241, Korea
Soowon Chae: Department of Architectural Engineering, Pusan National University, 2 Busandaehak-ro 63, Geomjeong-gu, Busan 46241, Korea
Yujin Nam: Department of Architectural Engineering, Pusan National University, 2 Busandaehak-ro 63, Geomjeong-gu, Busan 46241, Korea
Energies, 2022, vol. 15, issue 2, 1-16
Abstract:
The concept of zero energy buildings (ZEBs) has recently been actively introduced in the building sector, globally, to reduce energy consumption and carbon emissions. For the implementation of ZEBs, renewable energy systems, such as solar collectors, photovoltaic (PV) systems, and ground source heat pump (GSHP) systems, have been used. The system performance of solar collectors and PV systems are dependent on the weather conditions. A GSHP system requires a large area for boring machines and mud pump machines. Therefore, inhabitants of an existing small-scale buildings hesitate to introduce GSHP systems due to the difficulties in installation and limited construction area. This study proposes an integrate photovoltaic-thermal (PVT) and air source heat pump (ASHP) system for realizing ZEB in an existing small-scale building. In order to evaluate the applicability of the integrated PVT-ASHP system, a dynamic simulation model that combines the PVT-ASHP system model and the building load model based on actual building conditions was constructed. The heating and cooling performances of the system for one year were analyzed using the dynamic simulation model. As the simulation analysis results, the average coefficient of performance (COP) for heating season was 5.3, and the average COP for cooling season was 16.3., respectively. From April to June, the electrical produced by the PVT module was higher than the power consumption of the system and could realize ZEB.
Keywords: photovoltaic-thermal; air source heat pump; integrated PVT-ASHP system; small-scale building; zero energy building (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/2/528/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/2/528/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:2:p:528-:d:722995
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().