EconPapers    
Economics at your fingertips  
 

Cost Optimized Building Energy Retrofit Measures and Primary Energy Savings under Different Retrofitting Materials, Economic Scenarios, and Energy Supply

Leif Gustavsson and Chiara Piccardo
Additional contact information
Leif Gustavsson: Department of Built Environment and Energy Technology, Faculty of Technology, Linnaeus University, SE-35195 Växjö, Sweden
Chiara Piccardo: Department of Built Environment and Energy Technology, Faculty of Technology, Linnaeus University, SE-35195 Växjö, Sweden

Energies, 2022, vol. 15, issue 3, 1-17

Abstract: We analyze conventional retrofit building materials, aluminum, rock, and glass wool materials and compared such materials with wood-based materials to understand the lifecycle primary energy implications of moving from non-renewable to wood-based materials. We calculate cost optimum retrofit measures for a multi-apartment building in a lifecycle perspective, and lifecycle primary energy savings of each optimized measure. The retrofit measures consist of the thermal improvement of windows with varied frame materials, as well as extra insulation of attic floor, basement walls, and external walls with varied insulation materials. The most renewable-based heat supply is from a bioenergy-based district heating (DH) system. We use the marginal cost difference method to calculate cost-optimized retrofit measures. The net present value of energy cost savings of each measure with a varied energy performance is calculated and then compared with the calculated retrofit cost to identify the cost optimum of each measure. In a sensitivity analysis, we analyze the cost optimum retrofit measures under different economic and DH supply scenarios. The retrofit costs and primary energy savings vary somewhat between non-renewable and wood-based retrofit measures but do not influence the cost optimum levels significantly, as the economic parameters do. The lifecycle primary use of wood fiber insulation is about 76% and 80% less than for glass wool and rock wool, respectively. A small-scale DH system gives higher primary energy and cost savings compared to larger DH systems. The optimum final energy savings, in one of the economic scenarios, are close to meeting the requirements in one of the Swedish passive house standards.

Keywords: energy retrofit; retrofit cost; district heating; building material; life cycle (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/3/1009/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/3/1009/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:3:p:1009-:d:737856

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1009-:d:737856