Improved Optimal Control of Transient Power Sharing in Microgrid Using H-Infinity Controller with Artificial Bee Colony Algorithm
Mohammed Said Jouda and
Nihan Kahraman
Additional contact information
Mohammed Said Jouda: Department of Electronics and Communication Engineering, Yıldız Technical University, Esenler, Istanbul 34220, Turkey
Nihan Kahraman: Department of Electronics and Communication Engineering, Yıldız Technical University, Esenler, Istanbul 34220, Turkey
Energies, 2022, vol. 15, issue 3, 1-26
Abstract:
The microgrid has two main steady-state modes: grid-connected mode and islanded mode. The microgrid needs a high-performance controller to reduce the overshoot value that affects the efficiency of the network. However, the high voltage value causes the inverter to stop. Thus, an improved power-sharing response to the transfer between these two modes must be insured. More important points to study in a microgrid are the current sharing and power (active or reactive) sharing, besides the match percentage of power sharing among parallel inverters and the overshoot of both active and reactive power. This article aims to optimize the power response in addition to voltage and frequency stability, in order to make this network’s performance more robust against external disturbance. This can be achieved through a self-tuning control method using an optimization algorithm. Here, the optimized droop control is provided by the H-infinity (H∞) method improved with the artificial bee colony algorithm. To verify the results, it was compared with different algorithms such as conventional droop control, conventional particle swarm optimization, and artificial bee colony algorithms. The implementation of the optimization algorithm is explained using the time domain MATLAB/SIMULINK simulation model.
Keywords: microgrid; optimization; power sharing; droop control; artificial bee colony algorithm; particle swarm optimization; H? optimal controller; ABC (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/3/1043/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/3/1043/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:3:p:1043-:d:738861
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().