EconPapers    
Economics at your fingertips  
 

Low-Cost Sensors for Indoor PV Energy Harvesting Estimation Based on Machine Learning

Bastien Politi, Alain Foucaran and Nicolas Camara
Additional contact information
Bastien Politi: Institute of Electronics and Systems, University of Montpellier, 34095 Montpellier, France
Alain Foucaran: Institute of Electronics and Systems, University of Montpellier, 34095 Montpellier, France
Nicolas Camara: Institute of Electronics and Systems, University of Montpellier, 34095 Montpellier, France

Energies, 2022, vol. 15, issue 3, 1-16

Abstract: With the number of communicating sensors linked to the Internet of Things (IoT) ecosystem increasing dramatically, well-designed indoor light energy harvesting solutions are needed. A first step in this direction would be to be able to accurately estimate the harvestable energy in a specific light environment. However, inside, this energy varies in spectral composition and intensity, depending on the emission source as well as the time of day. These challenging conditions mean that it has become necessary to obtain accurate information about these variations and determine their impact on energy recovery performance. In this context, this manuscript presented a method to apply an innovative energy harvesting estimation method to obtain practical and accurate insight for the design of energy harvesting systems in indoor environments. It used a very low-cost device to obtain spectral information and fed it to supervised machine learning classification methods to recognize light sources. From the recognized light source, a model developed for flexible GaAs solar cells was able to estimate the harvestable energy. To validate this method in real indoor conditions, the estimates were compared to the energy harvested by an energy harvesting prototype. The mean absolute error percentage between estimates and the experimental measurements was less than 5% after more than 2 weeks of observation. This demonstrated the potential of this low-cost estimation system to obtain reliable information to design energetically autonomous devices.

Keywords: energy harvesting; IoT; low-cost; light source classification; indoor light analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/3/1144/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/3/1144/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:3:p:1144-:d:741742

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1144-:d:741742