EconPapers    
Economics at your fingertips  
 

Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive

Piotr Kołodziejek and Daniel Wachowiak
Additional contact information
Piotr Kołodziejek: Department of Electrical and Control Engineering, Gdansk University of Technology, 80-398 Gdansk, Poland
Daniel Wachowiak: Department of Electrical and Control Engineering, Gdansk University of Technology, 80-398 Gdansk, Poland

Energies, 2022, vol. 15, issue 3, 1-14

Abstract: This paper presents the theoretical analysis and experimental verification of a direct fault harmonic identification approach in a converter-fed electric drive for automated diagnosis purposes. On the basis of the analytical model of the proposed real-time direct fault diagnosis, the fault-related harmonic component is calculated using recursive DFT (RDFT) and Goertzel DFT (GDFT), applied instead of the full spectrum calculations required in the most popular FFT algorithm. The simulation model of an inverter sensorlessly controlled induction motor drive is linked with the induction machine rotor fault model for testing the sensitivity of the GDFT- and RDFT-based fault diagnosis to state variable estimation errors. According to the presented simulation results, the accuracy of the direct identification of a fault-related harmonic is sensitive to the quality of fault harmonic frequency estimation. The sensitivity analysis with respect to RDFT and GDFT algorithms is included. Based on the experimental setup with a sensorlessly controlled induction motor drive with the investigated rotor fault, fault diagnosis algorithms were implemented in the microprocessor by integration with the control system in one microcontroller and experimentally verified. The RDFT and GDFT approach has shown accurate and fast direct automated fault identification at a significantly decreased number of arithmetical operations in the microcontroller, which is convenient for the frequency-domain fault diagnosis in electric drives and supports fault-tolerant control system implementation.

Keywords: fault diagnosis; automated diagnosis; real-time diagnosis; recursive DFT; Goertzel DFT; induction motor; rotor fault; estimation; sensitivity analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/3/1244/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/3/1244/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:3:p:1244-:d:744645

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1244-:d:744645