Modeling of Double Stage Photovoltaic Inverter System with Fast Delayed Signal Cancellation for Fault Ride-Through Control Application in Microgrids
Elutunji Buraimoh and
Innocent E. Davidson
Additional contact information
Elutunji Buraimoh: Department of Electrical Power Engineering, Durban University of Technology, Durban 4001, South Africa
Innocent E. Davidson: Department of Electrical Power Engineering, Durban University of Technology, Durban 4001, South Africa
Energies, 2022, vol. 15, issue 3, 1-33
Abstract:
This research presents a secondary control for a grid-supporting microgrid with photovoltaics sources to guarantee grid code compliance and ancillary services. The secondary control accomplishes the fault ride-through, which implements a delayed signal cancellation (DSC) algorithm for negative sequence detection. Without mode switching, the proposed control strategy meets grid code requirements and ensures voltage regulation at the secondary level, which is active and more salient throughout the transient period of host grid disturbances. This control also ensures a constant supply of the microgrid’s sensitive local load while adhering to grid code requirements. Similarly, active power injection into the main grid is limited by progressively altering the MPPT operating point dependent on the depth of voltage sag to optimize reactive power injection to sustain grid voltage sag. The recommended secondary control is triggered by utilizing the DSC process’s detection algorithm to identify the occurrence of a fault in a tiny fraction of a half-cycle in a grid fault. Consequently, while satisfying microgrid load needs, the devised technique guaranteed that increases in DC-link voltage and AC grid current were controlled. MATLAB Simscape ElectricalTM and OPAL-RT Lab are used to do time-domain simulations of the model using the recommended secondary control systems.
Keywords: microgrid; solar photovoltaic; fault ride-through; grid code; secondary control; distributed energy resources (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/3/701/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/3/701/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:3:p:701-:d:727865
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().