Simulation Study of Solidification in the Shell-And-Tube Energy Storage System with a Novel Dual-PCM Configuration
Moslem Mozafari,
Ann Lee and
Shaokoon Cheng
Additional contact information
Moslem Mozafari: School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
Ann Lee: School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
Shaokoon Cheng: School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
Energies, 2022, vol. 15, issue 3, 1-16
Abstract:
This study proposes a novel dual-PCM configuration with outstanding solidification response in a horizontal shell-and-tube energy storage system. To demonstrate that the proposed PCM configuration is superior in its thermal responses, results from a range of numerical simulations are presented and compared between different configurations of dual-PCM. As the melting/solidus point is a crucial factor for the solidification rate, dual PCMs are chosen such that the average of their melting point is equal to the melting point of the single-PCM in the reference case. Additionally, equal-area sectors are considered for all cases to ensure the same quantities of PCMs are compared. The temporal liquid fraction and temperature contours reveal that solidification is delayed in the upper half of the system due to strong natural convection motions. Therefore, a dual-PCM configuration is offered to improve the solidification rate in this region and accelerate the full solidification process. Results show that placing a PCM with a lower solidus point in the lower half or an annulus-shaped zone around the cold tube can save the full recovery time up to 8.51% and 9.36%, respectively. The integration of these two strategies results in a novel and optimum design that saves the solidification time up to 15.09%.
Keywords: phase change material; energy storage; dual-PCM; solidification; heat exchanger; numerical (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/3/832/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/3/832/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:3:p:832-:d:732007
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().