Effect of the Intercalation and Dispersion of Organoclays on Energy Demand in the Extrusion of Recycled HDPE/PP Nanocomposites
Andres Rigail-Cedeño,
Javier Vera-Sorroche,
Gladys García-Mejía and
Raul Intriago
Additional contact information
Andres Rigail-Cedeño: Facultad de Ingeniería en Mecánica y Ciencias de la Producción, ESPOL Polytechnic University Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador
Javier Vera-Sorroche: Centre Européen des Textiles Innovants (CETI), 59200 Tourcoing, France
Gladys García-Mejía: Facultad de Ingeniería en Mecánica y Ciencias de la Producción, ESPOL Polytechnic University Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador
Raul Intriago: Facultad de Ingenieria en Electricidad y computación, ESPOL Polytechnic University Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador
Energies, 2022, vol. 15, issue 3, 1-12
Abstract:
Few studies have drawn on any systematic research into the energy demand to produce polymer-based nanocomposites. Regarding the problem, it is well-known that single screw extrusion is an energy-intensive process, so the incorporation of energy meters must be considered to examine the energy efficiency of the process. In this study, the effect of a nanoclay addition on the energy demand of the extrusion process was examined by extruding recycled high-density polyethylene (rHDPE) and recycled polypropylene (rPP) with a gradual compression screw with both dispersive and distributive mixers. The rHDPE/rPP was modified by adding commercial organoclay (OMMT) (3 wt%) and olefin block copolymer (OBC) (5 wt%) as compatibilizers. The energy consumption was measured on the total energy of the extruder machine. Mass throughput (MT) and specific energy consumption (SEC) were obtained at different screw speeds (10, 20, 30, 40, 50 RPM). The SEC of OMMT and OMMT/OBC nanocomposites was 25–50% lower than rHDPE/rPP, especially at higher throughputs. X-ray diffraction (XRD) and scanning electron microscope (SEM) illustrated the degree of intercalation and dispersion of the organoclay at different screw speeds. Better organoclay intercalation and dispersion were found at lower temperatures. Rheological curves showed a decrease in the viscosity at extrusion rates of nanocomposite mixtures. Melt temperature measured at die exit was reduced in the presence of organoclay over the screw speeds studied. This work suggests that the processing of rHDPE/rPP based nanocomposites can result in minor costs when processing conditions are carefully selected.
Keywords: recycled plastics; energy demand; polymer nanocomposites (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/3/859/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/3/859/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:3:p:859-:d:733140
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().