EconPapers    
Economics at your fingertips  
 

A Time-Series Self-Supervised Learning Approach to Detection of Cyber-physical Attacks in Water Distribution Systems

Haitham Mahmoud, Wenyan Wu and Mohamed Medhat Gaber
Additional contact information
Haitham Mahmoud: School of Engineering and Built Environment, Birmingham City University, Birmingham B4 7XG, UK
Wenyan Wu: School of Engineering and Built Environment, Birmingham City University, Birmingham B4 7XG, UK
Mohamed Medhat Gaber: School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK

Energies, 2022, vol. 15, issue 3, 1-18

Abstract: Water Distribution System (WDS) threats have significantly grown following the Maroochy shire incident, as evidenced by proofed attacks on water premises. As a result, in addition to traditional solutions (e.g., data encryption and authentication), attack detection is being proposed in WDS to reduce disruption cases. The attack detection system must meet two critical requirements: high accuracy and near real-time detection. This drives us to propose a two-stage detection system that uses self-supervised and unsupervised algorithms to detect Cyber-Physical (CP) attacks. Stage 1 uses heuristic adaptive self-supervised algorithms to achieve near real-time decision-making and detection sensitivity of 66% utilizing Boss. Stage 2 attempts to validate the detection of attacks using an unsupervised algorithm to maintain a detection accuracy of 94% utilizing Isolation Forest. Both stages are examined against time granularity and are empirically analyzed against a variety of performance evaluation indicators. Our findings demonstrate that the algorithms in stage 1 are less favored than those in the literature, but their existence enables near real-time decision-making and detection reliability. In stage 2, the isolation Forest algorithm, in contrast, gives excellent accuracy. As a result, both stages can collaborate to maximize accuracy in a near real-time attack detection system.

Keywords: attack detection; self-supervised learning; water distribution system; data intelligence; industrial cyber-physical systems (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/3/914/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/3/914/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:3:p:914-:d:735480

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:914-:d:735480