Modeling Subsurface Performance of a Geothermal Reservoir Using Machine Learning
Dmitry Duplyakin,
Koenraad F. Beckers,
Drew L. Siler,
Michael J. Martin and
Henry E. Johnston
Additional contact information
Dmitry Duplyakin: National Renewable Energy Laboratory, Golden, CO 80401, USA
Koenraad F. Beckers: National Renewable Energy Laboratory, Golden, CO 80401, USA
Drew L. Siler: U.S. Geological Survey, Moffett Field, CA 94035, USA
Michael J. Martin: National Renewable Energy Laboratory, Golden, CO 80401, USA
Henry E. Johnston: National Renewable Energy Laboratory, Golden, CO 80401, USA
Energies, 2022, vol. 15, issue 3, 1-20
Abstract:
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells—increasing or decreasing the fluid flow rates across the wells—and drilling new wells at appropriate locations. The latter is expensive, time-consuming, and subject to many engineering constraints, but the former is a viable mechanism for periodic adjustment of the available fluid allocations. In this study, we describe a new approach combining reservoir modeling and machine learning to produce models that enable such a strategy. Our computational approach allows us, first, to translate sets of potential flow rates for the active wells into reservoir-wide estimates of produced energy, and second, to find optimal flow allocations among the studied sets. In our computational experiments, we utilize collections of simulations for a specific reservoir (which capture subsurface characterization and realize history matching) along with machine learning models that predict temperature and pressure timeseries for production wells. We evaluate this approach using an “open-source” reservoir we have constructed that captures many of the characteristics of Brady Hot Springs, a commercially operational geothermal field in Nevada, USA. Selected results from a reservoir model of Brady Hot Springs itself are presented to show successful application to an existing system. In both cases, energy predictions prove to be highly accurate: all observed prediction errors do not exceed 3.68% for temperatures and 4.75% for pressures. In a cumulative energy estimation, we observe prediction errors that are less than 4.04%. A typical reservoir simulation for Brady Hot Springs completes in approximately 4 h, whereas our machine learning models yield accurate 20-year predictions for temperatures, pressures, and produced energy in 0.9 s. This paper aims to demonstrate how the models and techniques from our study can be applied to achieve rapid exploration of controlled parameters and optimization of other geothermal reservoirs.
Keywords: geothermal reservoir modeling; machine learning; energy predictions; geothermal reservoir management (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/3/967/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/3/967/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:3:p:967-:d:736816
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().