Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options
Matija Kostelac,
Lin Herenčić and
Tomislav Capuder
Additional contact information
Matija Kostelac: Department of Energy and Power Systems, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia
Lin Herenčić: Department of Energy and Power Systems, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia
Tomislav Capuder: Department of Energy and Power Systems, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia
Energies, 2022, vol. 15, issue 4, 1-17
Abstract:
With the restructuring of the power system, household-level end users are becoming more prominent participants by integrating renewable energy sources and smart devices and becoming flexible prosumers. The use of microgrids is a way of aggregating local end users into a single entity and catering for the consumption needs of shareholders. Various microgrid architectures are the result of the local energy community following different decarbonisation strategies and are frequently not optimised in terms of size, technology or other influential factors for energy systems. This paper discusses the operational and planning aspects of three different microgrid setups, looking at them as individual market participants within a local electricity market. This kind of implementation enables mutual trade between microgrids without additional charges, where they can provide flexibility and balance for one another. The developed models take into account multiple uncertainties arising from photovoltaic production, day-ahead electricity prices and electricity load. A total number of nine case studies and sensitivity analyses are presented, from daily operation to the annual planning perspective. The systematic study of different microgrid setups, operational principles/goals and cooperation mechanisms provides a clear understanding of operational and planning benefits: the electrification strategy of decarbonising microgrids outperforms gas and hydrogen technologies by a significant margin. The value of coupling different types of multi-energy microgrids, with the goal of joint market participation, was not proven to be better on a yearly level compared to the operation of same technology-type microgrids. Additional analyses focus on introducing distribution and transmission fees to an MG cooperation model and allow us to come to the conclusion of there being a minor impact on the overall operation.
Keywords: microgrids; decarbonisation; uncertainty; renewable energy sources; electricity market; energy vectors (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/4/1317/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/4/1317/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:4:p:1317-:d:747316
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().