Building Stock Energy Model: Towards a Stochastic Approach
Marta J. N. Oliveira Panão and
André Penas
Additional contact information
Marta J. N. Oliveira Panão: Instituto Dom Luiz (IDL), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
André Penas: Becquerel Institute, 1000 Brussels, Belgium
Energies, 2022, vol. 15, issue 4, 1-21
Abstract:
This work uses the outcome of a computational tool that performs Energy Performance Certification (EPC) data processing and transforms raw data into comparable data. Multi-correlation among variables results in probability distributions for the most relevant form and fabric building parameters. The model consistently predicts the distributions for heating and cooling energy needs for the Lisbon Metropolitan Area, with an error below 7% for the first, second and third quartiles. Differences in the energy needs estimation are below 6% when comparing the seasonal steady-state with the resistance-capacitance (RC) model, which proved to be a robust alternative algorithm capable of modeling hourly user profiles. The RC model calculates electricity consumption for actual, adequate, and minimum thermal comfort scenarios corresponding to different user profiles. The actual scenario, built from statistics and a previous survey, defines a reference to evaluate other scenarios for the mean electricity consumption for space heating and cooling in the building units with those systems. The results show that the actual mean electricity consumption for heating (610 kWh/y) is slightly above the minimum (512 kWh/y), with 37% of building units potentially under heated. The electricity consumption (108 kWh/y) for cooling is below the minimum (129 kWh/y).
Keywords: building stock energy model; probability distribution; electricity consumption; heating; cooling; residential (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/4/1420/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/4/1420/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:4:p:1420-:d:750317
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().