EconPapers    
Economics at your fingertips  
 

A Study on the Preprocessing Method for Power System Applications Based on Polynomial and Standard Patterns

Jun-Hyeok Kim, Jong-Man Joung and Byung-Sung Lee
Additional contact information
Jun-Hyeok Kim: Department of Electrical and Electronic Engineering, Sungkyunkwan University, Suwon 16419, Korea
Jong-Man Joung: Smart Power Distribution Laboratory, Korea Electric Power Corporation Research Institute, Daejeon 34056, Korea
Byung-Sung Lee: Smart Power Distribution Laboratory, Korea Electric Power Corporation Research Institute, Daejeon 34056, Korea

Energies, 2022, vol. 15, issue 4, 1-12

Abstract: Data-based decisions have been being made in various fields due to the development of sensors throughout the industries. Likewise, in the power system field, data-based decisions are being made in various tasks, including establishing distribution investment plans. However, in order for it to have validity, it is necessary to get rid of abnormal data or data with low representativeness of a temporary nature. Although in general, such a series of processes are done by preprocessing, the those of power system data should be handled not only noise but also data fluctuations caused by temporary change in operations such as load transfers, as mentioned above. In addition, the characteristics of load data of distribution lines (DLs) can be different depending on the characteristics of the load itself, the characteristics of the connected DLs, and regional characteristics of each DLs, so it is essential to propose and apply the optimized preprocessing method for each DL. In this study, therefore, an optimal preprocessing algorithm for each DL was proposed by mixing standard pattern calculations and polynomials based statistical method, and its appropriateness was verified by comparing the results with actual load transfer records. As a result of the verification, it was confirmed that the load transfer detection accuracy of the proposed method was 88.89%, and the maximum load of the target DL can be reduced up to 11.59% by removing the load transfer data.

Keywords: power systems data; load transfers; preprocessing; standard patterns; field application (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/4/1441/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/4/1441/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:4:p:1441-:d:750815

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1441-:d:750815