Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ
Mariusz Jerzy Stolarski,
Paweł Dudziec,
Ewelina Olba-Zięty,
Paweł Stachowicz and
Michał Krzyżaniak
Additional contact information
Mariusz Jerzy Stolarski: Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, Centre for Bioeconomy and Renewable Energies, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
Paweł Dudziec: Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, Centre for Bioeconomy and Renewable Energies, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
Ewelina Olba-Zięty: Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, Centre for Bioeconomy and Renewable Energies, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
Paweł Stachowicz: Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, Centre for Bioeconomy and Renewable Energies, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
Michał Krzyżaniak: Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, Centre for Bioeconomy and Renewable Energies, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
Energies, 2022, vol. 15, issue 4, 1-60
Abstract:
Exhaustion of fossil fuel resources, shrinking forest areas, with accompanying deterioration of their quality and striving (also of the society) to make forests perform their ecological function, with simultaneous development and propagation of the biomass conversion technologies—all of this necessitates research of forest biomass diversification. It is a consequence of the fact that its properties and composition depend not only on the genus but also on the plant organ, and they each time determine its usability as a raw biomaterial in a wide range of thermal, physical, or chemical conversion processes. This study reviewed and analysed selected qualitative and quantitative features of forest dendromass, taking into account the genus and a plant organ/morphological part, followed by a group of trees (coniferous and deciduous) and without the latter differentiation. The study involved an analysis of data covering 15 selected qualitative-quantitative features of forest dendromass within three main and nine additional plant organs/morphological parts and 21 genera (5 coniferous and 16 deciduous) typical of the temperate climate.
Keywords: forest biomass; dendromass; wood; branch; bark; heating value; ultimate analysis; proximate analysis; chemical composition; extracts (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/4/1442/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/4/1442/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:4:p:1442-:d:750856
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().