Modelling the Exergy of Solar Radiation: A Review
Eduardo Rodríguez,
José M. Cardemil,
Allan R. Starke and
Rodrigo Escobar
Additional contact information
Eduardo Rodríguez: Mechanical Engineering Department, Universidad de Chile, Santiago 8370456, Chile
José M. Cardemil: Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
Allan R. Starke: LEPTEN—Laboratory of Energy Conversion Engineering and Energy Technology, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
Rodrigo Escobar: Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
Energies, 2022, vol. 15, issue 4, 1-26
Abstract:
Exergy is a thermodynamic property that represents the quantification of the maximum useful work that can be extracted from a system interacting with the environment. Regarding solar radiation, radiative exergy has been a matter of study over the last 60 years where the main models applied describe the radiation as undiluted and diluted. The exergy of solar radiation is useful in the preliminary assessment of the performance of solar technologies, since the efficiency of the system depends directly on this value. The present paper describes a review of the main models reported in the literature considering these two approaches, analysing the main differences between the models and the main assumptions applied. A comparative analysis is carried out for the models of diluted and undiluted radiation, where the behaviour of every expression is discussed in detail. For the undiluted expressions, the behaviour of every model within a temperature range is analysed. For black-body radiation at a source temperature of 6000 K, the model proposed by Jeter determines an exergy factor of 0.96, while Spanner, Petela, Press and Badescu calculate a value of 0.93. Parrott’s model obtains a value of 0.99, which is above the value for Carnot efficiency. The diluted exergy expressions were evaluated according to wavelength and temperature range, where the trend in each comparison was that the exergy calculated from Karlsson, Candau and Petela was always the lowest. This result is attributed to the fact that these expressions consider the spectral entropy of the medium the radiation passes through. Finally, some new approaches are analysed which consider empirical correlations based on meteorological variables to model the exergy of solar radiation.
Keywords: solar radiation; exergy; diluted solar radiation; exergy analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/4/1477/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/4/1477/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:4:p:1477-:d:751482
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().