EconPapers    
Economics at your fingertips  
 

Evaluation of Indoor Thermal Environmental Conditions of Residential Buildings in Saudi Arabia

Mosaab Alaboud and Mohamed Gadi
Additional contact information
Mosaab Alaboud: Department of Architectural Engineering, Faculty of Engineering, Taibah University, Medina 42353, Saudi Arabia
Mohamed Gadi: Department of Architecture and Built Environment, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK

Energies, 2022, vol. 15, issue 5, 1-30

Abstract: The Saudi Arabian climate, generally speaking, is known to be hot and arid. Even with its extensive energy resources, Saudi Arabia is not immune to the demands of climate change. Over 50% of the country’s electricity is consumed by residential buildings. For economic, fiscal, and environmental reasons, government policy is to stem the profligate use of finite energy resources. It is incumbent on the Saudi building industry to adapt to changing conditions by re-assessing the choice of materials and the design and lay-out of new buildings to help quell demands for air-conditioning during the hotter parts of the year. Throughout the country, electricity consumption doubles in the summer months. Given this situation, this study explores the indoor thermal environment typical of residential buildings. The study selected one house located in a hot dry climatic region as a case study. The features of the house were assessed to determine the permeable features that require improvement. Two main methods used to evaluate indoor thermal conditions are physical measurements and computer modelling. Instruments were used to monitor the house during both summer and winter months. Thermal analysis software was used to model the thermal properties of the house for two purposes, first, to assess the thermal performance of the case-study building, and second, to identify areas in which improvements could be made using proposed alternative materials. Different parts of the building were simulated using different material combinations to achieve the optimal cooling reduction. The findings suggest that the cooling load can be reduced of up to 56.4%. Consequently, the intensity of the proposed annual cooling for the chosen house was predicted to be 79.7 kWh/m 2 /y.

Keywords: residential building; thermal performance; hot climate; physical measurement; environmental monitoring (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/5/1603/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/5/1603/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:5:p:1603-:d:755172

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1603-:d:755172