Energy Sustainability of a Cluster of Buildings with the Application of Smart Grids and the Decentralization of Renewable Energy Sources
Bohumír Garlík
Additional contact information
Bohumír Garlík: Faculty of Civil Engineering Prague, Czech Technical University, 160 00 Prague, Czech Republic
Energies, 2022, vol. 15, issue 5, 1-40
Abstract:
The optimal design of a building and city, including the balance of their energy performance, must include requirements from a wide range of areas, especially electrical engineering, informatics, technical equipment of buildings, construction and architecture, psychology and many other fields. It is the optimal design, simulation and modelling that are most reflected in the energy requirements of buildings while meeting the requirements of energy sustainability. The impact of buildings and cities on the environment is crucial and unmistakable. It should be emphasized that an inappropriately (architecturally or technologically) designed building with state-of-the-art control technology will still have worse properties than an optimally designed building without a control system. This inspired us to design a building energy model (BEM) with the implementation of a Smart Grid in a decentralized sustainable energy system, which is a microgrid from renewable energy sources (RES). This inspired us to conduct an analysis of simulation models (simultaneous simulations) to show the possibility of their application in the process of fully satisfying energy needs in a given urban region. The main goal is to design an original methodology for the design of smart “Nearly Zero Energy Buildings” (NZEB) and subsequent energy sustainability solutions. This led us to use Hybrid Optimization of Multiple Energy Resources (HOMER), PV*SOL (2D solar software design tool for the photovoltaic system performance), Monte Carlo and DesignBuilder. The EMB was designed based on the Six Sigma design quality management methodology. In the process of integrating Smart Grids with energy efficiency solutions for buildings, an original optimization basis was designed for smart buildings and smart urban areas. The proposed EMB was verified in an experiment.
Keywords: building energy model (BEM); six sigma; smart grid; microgrid; NZEB (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/5/1649/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/5/1649/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:5:p:1649-:d:756316
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().