EconPapers    
Economics at your fingertips  
 

Design and Analysis of a Multi-Input Multi-Output System for High Power Based on Improved Magnetic Coupling Structure

Zijia Zhang, Jun Liu and Yansong Li
Additional contact information
Zijia Zhang: Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Jun Liu: Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Yansong Li: Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

Energies, 2022, vol. 15, issue 5, 1-17

Abstract: Conventional inductive contactless power transfer (ICPT) systems have only one energy transmission path, which makes it challenging to meet the power transmission requirements of high-power and reliability. This study proposes a novel multiple-input multiple-output (MIMO) ICPT system. The three-dimensional finite element analysis tool COMSOL is utilised to study various magnetic coupling structures, analyse the influence of cross-coupling between coils on the same side, design the circuit based on this, propose a parameter configuration method for resonance compensation, and, finally, build an experimental platform with small magnetic coupling structures for single-input single-output systems (SISO) and MIMO systems. The results indicate that the co-directional connection of the coils of the E-shaped and UE-shaped magnetic coupling structures has a strengthening effect on the secondary side coupling. The magnetic coupling structure of the E-shaped iron core exhibits the best transmission performance. The transmission power of the MIMO system with the E-shaped magnetic coupling structure as the core device is significantly improved. In addition, the output power is unchanged after a secondary side fault, which verifies the accuracy of the proposed method.

Keywords: MIMO system; high-power applications; resonance; multiple coils; reliability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/5/1684/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/5/1684/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:5:p:1684-:d:757402

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1684-:d:757402