Topology and Formation of Current Source Step Down Resonant Switched Inductor Converters
Cuidong Xu and
Ka Wai Eric Cheng
Additional contact information
Cuidong Xu: Power Electronics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
Ka Wai Eric Cheng: Power Electronics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
Energies, 2022, vol. 15, issue 5, 1-20
Abstract:
This paper presents a current converter that uses an inductor based approach for interim energy storage. A family of the circuits for step down conversion is examined for both non-inverting and inverting operations. The paper has disclosed the method of the generation, so that any order of 1/ n conversion ratio can be made. One of the features is to use two transistors only in the common half-bridge style. The main contribution is its special current conversion capability and soft-switching, because it eliminates switching loss and the spike in the devices using a resonant capacitor with the switched-inductor. The performance has been proved to work well for current bucking. This is a new concept for the power converter and is an advanced development of the conventional switched-inductor converter, switched-capacitor, and resonant converter; it is a duality of the switched-capacitor converter. The paper provides a theoretical approach for the current source topology and its formation. It prepares for vast applications in the current source photovoltaic system and current mode system. Experiment verification and loss analysis have proven the preferable characteristics. Benchmarking comparison with similar converters has been made and advanced features have been described. The proposed converter presents current mode research for increasing application in the coming decade.
Keywords: current converter; switched-inductor converter; switched-capacitor converter; zero-voltage switching; soft-switching; duality; current source; photovoltaic (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/5/1697/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/5/1697/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:5:p:1697-:d:757794
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().