Numerical Analysis of Wick-Type Two-Phase Mechanically Pumped Fluid Loop for Thermal Control of Electric Aircraft Motors
Xinyu Chang,
Koji Fujita and
Hiroki Nagai
Additional contact information
Xinyu Chang: Institute of Fluid Science, Tohoku University, Sendai 9808577, Japan
Koji Fujita: Institute of Fluid Science, Tohoku University, Sendai 9808577, Japan
Hiroki Nagai: Institute of Fluid Science, Tohoku University, Sendai 9808577, Japan
Energies, 2022, vol. 15, issue 5, 1-15
Abstract:
The development of thermal control systems has become an important issue in next-generation electric aircraft design due to the increase in heat exhausted with electrification. In this paper, a wick-type two-phase mechanically pumped fluid loop system for future electric aircraft was proposed through the investigation of current two-phase flow cooling technology. Taking the experimental electric aircraft X-57 as an example, a wick-type two-phase mechanically pumped fluid loop with four evaporators for transporting 12 kW of waste heat within an 80 °C temperature limit was proposed and its feasibility was confirmed. A numerical model was constructed and validated to predict the operating characteristics of a two-phase mechanically pumped fluid loop. The optimal pump outputs under-even and uneven heat load conditions and was investigated for the first time by considering the vapor-liquid separation conditions in each flow path and the power consumption of the pump. Under the optimal pump output condition, the operating characteristics of the wick-type two-phase mechanically pumped fluid loop system were calculated. The calculation results indicate that the proposed wick-type two-phase mechanically pumped fluid loop is suitable as the thermal control system for an X-57 electric aircraft motor, as the calculation results satisfied the operational requirements of the motor.
Keywords: electric aircraft cooling devices; numerical model; mechanically pumped fluid loop (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/5/1800/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/5/1800/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:5:p:1800-:d:761134
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().