EconPapers    
Economics at your fingertips  
 

Pool Boiling Heat Transfer Performance and Bubble Dynamics from Pin Fin-Modified Surfaces with Geometrical Shape Variation

Indro Pranoto, Muhammad Aulia Rahman and Pradhana A. P. Mahardhika
Additional contact information
Indro Pranoto: Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2 Kampus UGM, Yogyakarta 55281, Indonesia
Muhammad Aulia Rahman: Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2 Kampus UGM, Yogyakarta 55281, Indonesia
Pradhana A. P. Mahardhika: Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2 Kampus UGM, Yogyakarta 55281, Indonesia

Energies, 2022, vol. 15, issue 5, 1-11

Abstract: In this paper, an experimental study investigating the effect of the geometrical shape of the circular and rectangular pin fins on the heat transfer performance and the boiling phenomenon is presented. A pool boiling experiment in the HFE-7100 dielectric working fluid under atmospheric pressure was conducted. Boiling curves and boiling heat transfer coefficients of different test cases were plotted to evaluate the heat transfer performance as well as the captured images of the boiling phenomenon on the test samples. Two quantities, flow resistance and wetted perimeter, were calculated to understand the behaviour of the boiling physics due to variation of fin geometrical shape and, hence, their effect on the heat transfer performance. It was found that the cooling performance of the rectangular pin fins was higher than that of the circular pin fins, despite having a slightly higher flow resistance of 4% and 7%, respectively. This is believed to be the result of the longer wetted perimeter up to 27%, whereby the nucleation site has a higher probability of generating more bubbles in the same boiling surface area. For the tested modified boiling surface with 196 and 144 pin fins, the average heat transfer performances were found to have differences of up to 3.54 and 1.58 times larger, respectively.

Keywords: pool boiling; bubble dynamics; modified surface; pin fin; heat transfer performance; macro structure; electronic cooling; two-phase cooling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/5/1847/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/5/1847/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:5:p:1847-:d:762707

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1847-:d:762707