Study on Combustion Characteristics of Cable Based on Cone Calorimeter
Hao Zhang,
Jinxia Yao,
Hui Zhu and
Xiaolong Wang
Additional contact information
Hao Zhang: State GRID Shandong Electric Power Research Institute, Jinan 250003, China
Jinxia Yao: State GRID Shandong Electric Power Research Institute, Jinan 250003, China
Hui Zhu: Sichuan Fire Research Institute of MEM, Chengdu 610036, China
Xiaolong Wang: School of Electrical Engineering, Shandong University, Jinan 250061, China
Energies, 2022, vol. 15, issue 5, 1-13
Abstract:
Cross-linked polyethylene (XLPE) carries a high fire risk. In this paper, a cone calorimeter is used to carry out radiation ignition experiments, and the heat release rate (HRR), mass loss rate (MLR) and other combustion parameters of XLPE cables under three kinds of radiation intensity are measured. By comparing the ignition time and HRR of samples under different conditions, the following conclusions are drawn: (1) The ignition time of XLPE cables decreases significantly with the increase in external thermal radiation intensity. The critical ignition heat flux (CHF) is about 16.24 kW/m 2 . (2) The HRR curve of XLPE is consistent with the characteristics of hot, thick material. The HRR rises rapidly to the first peak after ignition and then rapidly decreases. Then, it slowly rises to the second peak. Finally, it slowly decays until the combustion stops. (3) The first peak values of HRR of XLPE under different radiation intensities are almost the same. The time for the second peak of HRR is shorter, and the value is larger with the increase in external thermal radiation intensity. (4) The cable ignition model is established, which can simulate the cable ignition time well under different radiant heat flow conditions. (5) Based on the mathematical model, the ignition time trend with the thickness of sheath layer and conductive core layer as variables is deduced.
Keywords: cone calorimeter; cable; XLPE; ignition time; HRR (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/5/1904/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/5/1904/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:5:p:1904-:d:764610
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().