Machine Learning-Enhanced Play Fairway Analysis for Uncertainty Characterization and Decision Support in Geothermal Exploration
R. Chadwick Holmes and
Aimé Fournier
Additional contact information
R. Chadwick Holmes: Earth Resources Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Aimé Fournier: Earth Resources Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Energies, 2022, vol. 15, issue 5, 1-56
Abstract:
Geothermal exploration has traditionally relied on geological, geochemical, or geophysical surveys for evidence of adequate enthalpy, fluids, and permeability in the subsurface prior to drilling. The recent adoption of play fairway analysis (PFA), a method used in oil and gas exploration, has progressed to include machine learning (ML) for predicting geothermal drill site favorability. This study introduces a novel approach that extends ML PFA predictions with uncertainty characterization. Four ML algorithms—logistic regression, a decision tree, a gradient-boosted forest, and a neural network—are used to evaluate the subsurface enthalpy resource potential for conventional or EGS prospecting. Normalized Shannon entropy is calculated to assess three spatially variable sources of uncertainty in the analysis: model representation, model parameterization, and feature interpolation. When applied to southwest New Mexico, this approach reveals consistent enthalpy trends embedded in a high-dimensional feature set and detected by multiple algorithms. The uncertainty analysis highlights spatial regions where ML models disagree, highly parameterized models are poorly constrained, and predictions show sensitivity to errors in important features. Rapid insights from this analysis enable exploration teams to optimize allocation decisions of limited financial and human resources during the early stages of a geothermal exploration campaign.
Keywords: exploration; geothermal; play fairway analysis; uncertainty; machine learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/5/1929/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/5/1929/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:5:p:1929-:d:765494
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().