Comparative Study of Inlet Structure and Obstacle Plate Designs Affecting the Temperature Stratification Characteristics
Piyatida Trinuruk,
Papangkorn Jenyongsak and
Somchai Wongwises
Additional contact information
Piyatida Trinuruk: Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
Papangkorn Jenyongsak: Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
Somchai Wongwises: Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
Energies, 2022, vol. 15, issue 6, 1-25
Abstract:
Temperature stratification between outgoing hot water and incoming cold water is a key factor in diminishing energy loss during the discharging process and maximizing the useful hot water delivered from the tank or enhancing the thermal efficiency of the heating device during the heating process. In this study, the inlet structure and the obstacle plate were designed and modified based on two main factors, the reduction of inlet water velocity and the stipulation of the water recirculation area, to develop temperature stratification through the computational fluid dynamics method. The simulation model’s accuracy was validated against the experimental results. The results showed that using the equalizer as an inlet pipe’s auxiliary device was the best approach for decreasing the inlet water velocity, which resulted in enhancing temperature stratification. The discharging efficiency improved from 77.3% for the original tank model to 86.1% for the tank with equalizer IV model, which meant an additional 45 L of useful hot water was gained from the good temperature stratification storage tank. The installation of the obstacle plate for controlling the turbulence zone could not improve temperature stratification significantly, which resulted in an increase in discharging efficiency by only 4% more than the original tank model.
Keywords: discharging efficiency; inlet structure; obstacle plate; temperature stratification (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/6/2032/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/6/2032/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:6:p:2032-:d:768371
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().