Numerical Probabilistic Load Flow Analysis in Modern Power Systems with Intermittent Energy Sources
Filip Mišurović and
Saša Mujović
Additional contact information
Filip Mišurović: Faculty of Electrical Engineering, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro
Saša Mujović: Faculty of Electrical Engineering, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro
Energies, 2022, vol. 15, issue 6, 1-20
Abstract:
Renewable resources integration through distributed generation (DG) affects conventional consideration of power system performance and confronts deterministic load flow (DLF) analysis with serious challenges. The DLF gives a snapshot of the system state neglecting all of the uncertainties arising from intermittent DG driven by variable weather conditions or volatile consumption. Therefore, with the aim of finer tracking and presentation of system variables, a probabilistic load flow (PLF) approach should be adopted. First, this article gives a literature overview of different PLF techniques. It focuses on numerical techniques examining them for simple random and Latin Hypercube sampling, vastly applied in previous works, and proposes a method combining Monte Carlo simulations with Halton quasi-random numbers. Stochastic modelling is performed for solar and wind power output. For method comparison and confirmation of the applicability of suggested PLF method with Halton sequences, different IEEE test cases were used, all modified by attaching DGs. More profound method assessment is conducted through discussing different renewables penetration levels and processing time. The overall simulation outcomes have shown that results of Halton method are of similar precision as the generally used Latin Hypercube method and therefore indicated the relevance of the proposed method and its potential for application in contemporary system analysis.
Keywords: distributed generation; Halton sequences; load flow; Monte Carlo methods; probabilistic logic; uncertainty (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/6/2038/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/6/2038/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:6:p:2038-:d:768498
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().