EconPapers    
Economics at your fingertips  
 

Numerical Study on Flow and Heat Transfer Characteristics of Supercritical CO 2 in Zigzag Microchannels

Yi Tu and Yu Zeng
Additional contact information
Yi Tu: School of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000, China
Yu Zeng: School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Energies, 2022, vol. 15, issue 6, 1-16

Abstract: The zigzag channel is the uppermost channel type of an industrial printed circuit heat exchanger (PCHE). The effect of geometric properties on the flow and heat transfer performance of the channel is significant to the PCHE design and optimization. Numerical investigations were conducted on the flow and heat transfer characteristics of supercritical CO 2 (sCO 2 ) in semicircular zigzag channels by computational fluid dynamics method. The shear stress transfer (SST) k–ω model was used as turbulence model and the National Institute of Standards and Technology (NIST) real gas model with REFPROP database was used to evaluate the thermophysical parameters of sCO 2 in this numerical method. The effectiveness of the simulation method is verified by experimental data. Thermal hydraulic performance for zigzag channels with different pitch lengths, bending angles, and hydraulic diameters are studied comparatively based on this numerical method, with the boundary conditions which cover the pseudocritical point. The comparison results show that reducing the bending angle and pitch length will strengthen the effect of boundary layer separation on the leeward side of the wall and enhance the heat transfer performance, but the pressure drop of the channel will also increase, and the decrease of channel hydraulic diameter is beneficial to the heat transfer enhancement, but it is not as significant as that of the straight channel.

Keywords: supercritical CO 2; zigzag channel; micro channel; heat transfer; computational fluid dynamics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/6/2099/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/6/2099/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:6:p:2099-:d:770285

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2099-:d:770285