Collaborative Charging Scheduling of Hybrid Vehicles in Wireless Rechargeable Sensor Networks
Jing-Jing Chen and
Chang-Wu Yu
Additional contact information
Jing-Jing Chen: College of Physics and Mechanical & Electrical Engineering, Longyan University, Longyan 364000, China
Chang-Wu Yu: Department of Computer Science and Information Engineering, Chung Hua University, Hsinchu 30012, Taiwan
Energies, 2022, vol. 15, issue 6, 1-27
Abstract:
Wireless rechargeable sensor networks (WRSN) are utilized in environmental monitoring, traffic video surveillance, medical services, etc. In most existing schemes, WRSNs provide sustainable energy for sensor nodes by employing one or more wireless charging vehicles (WCVs). However, two essential drawbacks, regional limitations and traveling speed limitations, constrain these schemes when applied in hostile and large-scale environments. On the other hand, benefiting from the intrinsic flexibility, high flight speed, low cost, and small size of drones, some works have used drones to charge sensor nodes. However, suffering from limited battery capacities, it is also hard to only use drones in large-scale WRSNs. To overcome the drawbacks of WCVs and drones, we proposed a novelty wireless charging system that deploys WCV, WCV-carried drones, and wireless charging pads (pads) in a large-scale wireless sensor network. Based on this new wireless charging system, we first formulated a pad deployment problem for minimizing the total number of pads subject to each sensor in the pad region that only can be charged by drones. In this work, three near-optimal algorithms, i.e., greedy, K -mean, and static, for the pad deployment problem are proposed. Then, to form a sustainable WRSN, we elucidated the collaborative charging scheduling problem with the deadlines of sensors. To guarantee the maximum number of sensors to be charged before the deadlines, we also presented an approximation algorithm to find the collaborative charging scheduling of WCV and WCV-carried drones with the help of pads based on the three deployment pad schemes. Through extensive simulations, we demonstrate the effectiveness of the proposed deployment pad schemes. and that the number of pads obtained by the greedy and K -mean scheme was generally lower than that of the static scheme with respect to network density, WCV region, and flight range. Then, we also examined the proposed collaborative charging scheduling scheme by extensive simulations. The results were compared and showed the effectiveness of the proposed schemes in terms of lifetime, the percentage of nodes being charged in time, the average move time of drones, the percentage of nodes being charged late by the drones, and the charge efficiency of all vehicles under different traffic loads. Related statistical analyses showed that the percentage of nodes being charged in time and the percentage of nodes being charged late based on the greedy and K -mean schemes were slightly better than those of the static scheme, but the charge efficiency of drones of the static scheme was significantly superior to that of the K -mean scheme under a busy network.
Keywords: wireless rechargeable sensor networks; collaborative charging scheduling; wireless charging pads; WCV-carried drones (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/6/2256/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/6/2256/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:6:p:2256-:d:774991
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().