EconPapers    
Economics at your fingertips  
 

Experimental Analysis of Clearance Leakage Characteristics at Blade Edge Plates of a Gas Turbine Engine

Yan Chen, Chenkun Cai and Gaowen Liu
Additional contact information
Yan Chen: School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China
Chenkun Cai: School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China
Gaowen Liu: School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China

Energies, 2022, vol. 15, issue 7, 1-16

Abstract: The loss of cold air from the blade edge plates of the turbine has a negative impact on engine performance and safety. Using an experimental method, this paper investigates the effect of geometric and aerodynamic parameters on cold air leakage through pressure and mass flow measurements. Based on the results, it can be concluded that, with a change in sheet spacing, the proportion of bypass leakage and clearance leakage changes. At the same sheet spacing, the edge plate clearance is increased from 1 mm to 1.1 mm, resulting in a 30% increase of total leakage and a 25.7% increase of leakage equivalent mass flow. The edge plate clearance was increased from 1.1 mm to 1.2 mm, the total leakage increased by 19.2%, and the equivalent mass flow of leakage was 19%. The proportion of clearance leakage in the total leakage increased gradually for a given edge plate clearance. When the sheet spacing was 1 mm, bypass leakage accounted for 68% of the total leakage and was the primary source of leakage. The clearance leakage accounted for 83% of the total leakage with a plate spacing of 10 mm. When the sheet spacing is small, bypass leakage dominates; when it is large, clearance leakage dominates. The variation law of leakage with pressure, structural parameters and the ratio of sheet spacing to sealing slot length play an important role in the design of sealing structures.

Keywords: gas turbine engine; blade edge plate; clearance leakage; bypass leakage; equivalent mass flow (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/7/2303/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/7/2303/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:7:p:2303-:d:776465

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2303-:d:776465