Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions
Michael Bohm,
Josef Stetina and
David Svida
Additional contact information
Michael Bohm: Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
Josef Stetina: Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
David Svida: Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
Energies, 2022, vol. 15, issue 7, 1-16
Abstract:
Modern automotive gasoline engines have highly efficient after-treatment systems that reduce exhaust gas emissions. However, this efficiency greatly depends on the conditions of the exhaust gas, mainly the temperature and air–fuel ratio. The temperature instability during transient conditions may cause a reduction in the efficiency of the three-way catalyst (TWC). By using a thermal energy storage system before TWC, this negative effect can be suppressed. In this paper, the effects of the temperature stabilization on the efficiency of the three-way catalyst were investigated on a 1-D turbocharged gasoline engine model, with a focus on fuel consumption and emissions. The thermal energy storage system (TESS) was based on PCM materials and was built in the exhaust between the turbine and TWC to use the energy of the exhaust gas. Three different materials were picked up as possible mediums in the storage system. Based on the results, the usage of a TESS in a gasoline after-treatment system has shown great potential in improving TWC efficiency. This approach can assist the catalyst to operate under optimal conditions during the drive. In this study, it was found that facilitating the heat transfer between the PCM and the catalyst can significantly improve the emissions’ reduction performance by avoiding the catalyst to light out after the cold start. The TESS with PCM H430 proved to reduce the cumulative CO and HC emissions by 8.2% and 10.6%, respectively, during the drive. Although a TES system increases the after-treatment cost, it can result in emission reductions and fuel consumption over the vehicle’s operating life.
Keywords: gasoline; combustion engine; PCM material; thermal energy storage system; exhaust gas temperature; temperature pulsations (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/7/2365/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/7/2365/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:7:p:2365-:d:778419
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().