EconPapers    
Economics at your fingertips  
 

Numerical Simulation on Pressure Dynamic Response Characteristics of Hydrogen Systems for Fuel Cell Vehicles

Wenshang Chen, Yang Liu and Ben Chen
Additional contact information
Wenshang Chen: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
Yang Liu: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
Ben Chen: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

Energies, 2022, vol. 15, issue 7, 1-18

Abstract: A proton exchange membrane fuel cell (PEMFC) is known as one of the most promising energy sources for electric vehicles. A hydrogen system is required to provide hydrogen to the stack in time to meet the flow and pressure requirements according to the power requirements. In this study, a 1-D model of a hydrogen system, including the fuel cell stack, was established. Two modes, one with and one without a proportion integration differentiation (PID) control strategy, were applied to analyze the pressure characteristics and performance of the PEMFC. The results showed that the established model could be well verified with experimental data. The anode pressure fluctuation with a PID control strategy was more stable, which reduced the damage to the fuel cell stack caused by sudden changes of anode pressure. In addition, the performance of the stack with the PID control mode was slightly improved. There was an inflection point for hydrogen utilization; the hydrogen utilization rate was higher under the mode without PID control when the current density was greater than 0.4 A/cm 2 . What is more, a hierarchical control strategy was proposed, which made the pressure difference between the anode and cathode meet the stack working requirements, and, more importantly, maintained the high hydrogen utilization of the hydrogen system.

Keywords: proton exchange membrane fuel cell; hydrogen system; pressure response characteristics; hydrogen utilization; hierarchical control strategy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/7/2413/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/7/2413/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:7:p:2413-:d:779307

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2413-:d:779307