Optimal Service Restoration Scheme for Radial Distribution Network Using Teaching Learning Based Optimization
Mulusew Ayalew,
Baseem Khan and
Zuhair Muhammed Alaas
Additional contact information
Mulusew Ayalew: Department of Electrical and Computer Engineering, Dilla University, Dilla 419, Ethiopia
Baseem Khan: Department of Electrical and Computer Engineering, Hawassa University, Hawassa 005, Ethiopia
Zuhair Muhammed Alaas: Electrical Engineering Department, College of Engineering, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
Energies, 2022, vol. 15, issue 7, 1-20
Abstract:
In the event of a fault isolation process, all loads located downstream from the faulted point become out of service, and as a consequence, the power interruption affects a greater portion of the radial distribution system. This paper proposes an optimal Service Restoration (SR) method that entails changing the network topology configuration via optimal tie-switch and section switch combinations. However, when the network topology configuration is performed, it results in increased load currents. As a result, some Protective Devices (PDs) can operate undesirably and some network branches may become unprotected. Therefore, it is essential to consider protection constraints in the SR problem to maintain service continuity during power interruptions. The proposed method aims at optimal SR with minimum out-of-service loads, minimum power loss, and improved voltage profiles and at the same time ensures PDs operate correctly during the normal and overloading conditions. The proposed method was carried out on the Debre Markos distribution networks, using the Teaching Learning Based Optimization (TLBO), Particle Swarm Optimization (PSO), and Differential Evolutionary (DEV) algorithms. The proposed SR was carried out considering and without considering protection constraints. The obtained SR topology was not feasible for SR without considering protection constraints, since some PDs fail to operate properly in normal loading conditions. After executing the proposed SR algorithms by considering protection constraints for a single fault case, the power loss reductions in TLBO, DEV, and PSO were 64.9073%, 45.9073%, and 55.358 %, respectively. The minimum voltage profiles obtained in each proposed TLBO, DEV, and PSO algorithm were 0.96%, 0.95%, and 0.96%, respectively. In each algorithm, except for the branch under fault, all healthy out-of-service branches were restored. When the protection constraints were considered in an optimal SR, load current did not exceed the rating of the fuses. The results show the importance of considering protection constraints during SR to prevent dysfunction of the PDs in the network. Comparative analyses were carried out on each algorithm and TLBO algorithms performed better than PSO and DEV for search functions.
Keywords: service restoration; protective devices; radial distribution system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/7/2505/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/7/2505/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:7:p:2505-:d:782206
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().